
Mary Elizabeth Anderson
Professor, Chemistry
- Email: maryelizabeth.anderson@furman.edu
- Phone: 864.294.2101
- Office: Plyler 236A, Townes Science Center
Born and raised in Alabama, Mary Elizabeth (Beth) Anderson obtained her B.S. in Chemistry at Samford University in Birmingham, AL. She earned her Ph.D. in Chemistry at Pennsylvania State University and was directed by Prof. Paul S. Weiss (Chemistry) and Prof. Mark W. Horn (Engineering Science). Her doctoral research was interdisciplinary with projects focused in the areas of surface, material, and engineering sciences; combining chemical self-assembly with conventional lithography. Between her graduate and postdoctoral research, she was a Postdoctoral Faculty Fellow at Boston University co-teaching general chemistry, while conducting research using surface plasmon resonance spectroscopy with Prof. Rosina M. Georgiadis. She returned to Penn State as a Postdoctoral Research Associate with Prof. Raymond E. Schaak in Chemistry working to integrate inorganic solid-state synthesis techniques with nanofabrication methods. In Fall 2018, she joined the Chemistry Department at Furman University as an Associate Professor after being tenured and promoted at Hope College in Michigan (2010-2018). Her research is in the area of material science and surface chemistry with teaching responsibilities in general and analytical chemistry. Exploring and capturing images of the nanoscale world is one of her passions and an integral component of her research program.
Education
- Ph.D., Pennsylvania State University
- B.S., Samford University
Research
Investigating the Bottom-up Assembly of Nanomaterials
The incorporation of nanomaterials into a wide range of applications is motivated by the diverse properties (optical, electrical, magnetic, catalytic, etc.) of these nanoscale materials and their tunability by particle size, shape and composition. The goal of research in the Anderson lab is to build and characterize these materials from the bottom-up, assembling molecules and atoms into complex nanomaterials. Current research investigates the surface chemistry for the fabrication of thin film metal-organic frameworks, as well as materials chemistry for diverse structural and compositional nanomaterials, specifically thermoelectric materials.
Students engaged in this research learn methodologies for the fabrication of nanoparticles and thin films, utilizing solution-phase solid-state synthesis and metal-organic coordination chemistry. For characterization of material composition and particle assembly, students will routinely use powder x-ray diffraction spectroscopy, scanning probe microscopy and scanning electron microscopy with energy dispersive spectroscopy. Students will gain experience in the interdisciplinary field of nanoscience — from the chemistry involved in material fabrication, to the physics involved in the forces directing assembly, to the engineering involved in designing hierarchical architectures.
This type of research is necessary to integrate nanomaterials into complex architectures that interface with the outside world for applications in the fields of energy, computing and medicine.
Research Funding:
- Henry Dreyfus Teacher-Scholar Award: Bottom-Up Assembly of Nanomaterials: Investigating Fundamentals of Formation to Tailor Material Structure and Properties, 2019-2024.
- NSF-RUI: Exploring Synthesis, Tailoring Structure, Evaluating Material Properties, and Enabling Patterning of Surface-Anchored Framework Assemblies, 2019-2022.
- NSF-RUI: Enabling Rational Design of Smart Interfaces Incorporating Metal-Organic Coordinated Assemblies, 2015 – 2019.
- ACS-PRF: Assembly and Characterization of Metal-Organic Coordinated Thin Films with Designed Catalytic Sites, 2014 – 2016.
- NSF-MRI: Acquisition of an Atomic Force Microscope at Hope College, 2011 – 2014.
-
Bowser, B.H.; Brower, L.J.; Ohnsorg, M.L.; Gentry, L.K.; Beaudoin, C.K.; Anderson, M.E. Comparison of Surface-Bound and Free-Standing Variations of HKUST-1 MOFs: Effect of Activation and Ammonia Exposure on Morphology, Crystallinity, and Composition. Nanomaterials.2018,8, 650-668.
-
Weller, D.P.; Kunkel, G.E.; Ochs, A.M.; Morelli, D.T; Anderson, M.E. Observation of n-type behavior in Fe-doped tetrahedrite at low temperature. Materials Today Physics.2018, 7.1, 1-6.
-
Serino, A.C.; Anderson, M.E.; Heidenreich, L.; Dunn, B.S.; Spokoyne, A.M.; Weiss, P.S. Work Function Control of Germanium Through Carboxyl-Carborane Surface Passivation. ACS Appl. Mater. Interfaces.2017,9, 34592-34596.
-
Weller, D.P.; Stevens, D.L.; Kunkel, G.E.; Ochs, A.M.; Holder, C.F.; Morelli, D.T.; Anderson, M.E. Thermoelectric Performance of Tetrahedrite Synthesized by a Modified Polyol Process. Chem. Mater.2017,29, 1656-1664.
-
Brower, L.J.; Gentry, L.K.; Napier, A.L.; Anderson, M.E. Tailoring Nanoscale Morphology of HKUST-1 Thin Films by Tuning Deposition Conditions. Beilstein J. Nanotechnol.2017,8, 2307-2314.
-
Ohnsorg, M.L.; Beaudoin, C.K.; Anderson, M.E. Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature. Langmuir.2015,31, 6114-6121.
-
Benson, A.S.; Elinski, M.B.; Ohnsorg, M.L.; Beaudoin, C.K.; Alexander, K.; Peaslee, G.F.; DeYoung, P.; Anderson, M.E. Metal-Organic Coordinated Multilayer Film Formation: Quantitative Analysis of Composition and Structure. Thin Solid Films.2015,590, 103-110.
-
Holder, C.F.; Rugen, E.E.; Anderson, M.E. Comparative Growth Mechanism Study for Two Thermoelectric Compounds. Nanomater. Energy.2014,3, 206-214.
-
Duffey, C.; Stepleton, S.; Anderson, M.E.; Cox, D.; Ready, M.; Byrd, H.; Bloomfield, C.A.; Freeman, J.L.; Gray, G.M. X-ray Crystallographic Studies of a Bimetallic cis-Mo(CO)4(PPh2NH2CH2CH2N=CHC6H4-o-O)2Cu Complex, the Starting Material, cis-Mo(CO)4(PPh2Cl)2, and the Reaction Intermediates cis-Mo(CO)4(PPh2NH2CH2CH2NH22) 2 and cis-Mo(CO)4 (PPh2NH2CH2CH2N=CHC6H4-o-OH)2. J. Chem. Crystallogr.2011,41, 1560-1567.
-
Anderson, M.E.; Bharadwaya, S.S.N.; Schaak, R.E. Modified Polyol Synthesis of Bulk-Scale Nanostructured Bismuth Antimony Telluride. J. Mater. Chem.2010,20, 8362-8367.
-
Leonard, B.M.; Anderson, M.E.; Oyler, K.D.; Phan, T.-H.; Schaak, R.E. Orthogonal Reactivity of Metal and Multi-Metal Nanostructures for Selective, Stepwise, and Spatially-Controlled Solid State Modification. ACS Nano.2009,3, 940-948.
-
Srinivasan, C.; Hohman, J.N.; Anderson, M.E.; Weiss, P.S.; Horn, M.W. Sub-30-Nanometer Patterning on Quartz for Nanolithography Imprint Templates. Appl. Phys. Lett.2008,93, 083123.
-
Ruemmele, J.A.; Golden, M.S.; Gao, Y.; Cornelius, E.M.; Anderson, M.E.; Postelnicu, L.; Georgiadis, R.M. Quantitative Surface Plasmon Resonance Imaging: A Simple Approach to Automated Angle Scanning. Anal. Chem.2008,80, 4752-4756.
-
Anderson, M.E.; Buck, M.R.; Sines, I.T.; Oyler, K.D.; Schaak, R.E. On-Wire Conversion Chemistry: Engineering Solid-State Complexity into Striped Metal Nanowires using Solution Chemistry Reactions. J. Am. Chem. Soc.2008,130, 14042-14043.
-
Shuster, M.J.; Vaish, A.; Szapacs, M.E.; Anderson, M.E.; Weiss, P.S.; Andrews, A.M. Biospecific Recognition of Tethered Small Molecules Diluted in Self-Assembled Monolayers. Advanced Materials.2008,20, 164-167.
-
Srinivasan, C.; Mullen, T.J.; Hohman, J.N.; Anderson, M.E.; Dameron, A.A.; Andrews, A.M.; Dickey, E.C.; Horn, M.W.; Weiss, P.S. Scanning Electron Microscopy of Nanoscale Chemical Patterns. ACS Nano.2007,1, 191-201.
-
Srinivasan, C.; Hohman, J.N.; Anderson, M.E.; Weiss, P.S.; Horn, M.W. Nanostructures Using Self-Assembled Multilayers as Molecular Rulers and Etch Resists. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -- Process., Meas., Phenom.2007,26, 1985-1988.
-
Anderson, M.E.; Srinivasan, C.; Hohman, J.N.; Carter, E.M.; Horn, M.W.; Weiss, P.S. Combining Conventional Lithography with Molecular Self-Assembly for Chemical Patterning. Advanced Materials.2006,18, 3258-3260.
-
Anderson, M.E.; Tan, L.P.; Mihok, M.; Tanaka, H.; Horn, M.W.; McCarty, G.S.; Weiss, P.S. Hybrid Approaches to Nanolithography: Photolithographic Structures with Precise Controllable Nanometer-Scale Spacings Created by Molecular Rulers. Advanced Materials.2006,18, 1020-1022.
-
Srinivasan, C.; Anderson, M.E.; Carter, E.M.; Hohman, J.N.; Bharadwaja, S.S.N.; Trolier-McKinstry, S.; Weiss, P.S.; Horn, M.W. Extensions of Molecular Ruler Technology for Nanoscale Patterning. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -- Process., Meas., Phenom.2006,24, 3200-3204.
-
Srinivasan, C.; Anderson, M.E.; Jayaraman, R.; Weiss, P.S.; Horn, M.W. Electrically Isolated Nanostructures Fabricated using Self-Assembled Multilayers and a Novel Bi-layer Resist Stack. Microelectron. Eng.2006,83, 1517-1520.
-
Anderson, M.E.; Srinivasan, C.; Jayaraman, R.; Weiss, P.S.; Horn, M.W. Utilizing Self-Assembled Multilayers in Lithographic Processing for Nanostructure Fabrication: Initial Evaluation of the Electrical Integrity of the Nanogaps. Microelectron. Eng.2005,78-79, 248-252.
-
Tanaka, H.; Anderson, M.E.; Horn, M.W.; Weiss, P.S. Position-Selected Molecular Ruler. Jpn. J. Appl. Phys.2004,43, 950-953.
-
Tanaka, H.; Anderson, M.E.; Tan, L.P.; Mihok, M.; Horn, M.W.; Weiss, P.S. Super-Precise Nanolithography using Multilayer of Self-Assembled Monolayers. J. Surf. Sci. Soc. Jpn.2004,25, 650-655.
-
Anderson, M.E.; Tan, L.P.; Tanaka, H.; Mihok, M.; Lee, H.; Horn, M.W.; Weiss, P.S. Advances in Nanolithography Using Molecular Rulers. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -- Process., Meas., Phenom.2003,21, 3116-3119.
-
Anderson, M.E.; Smith, R.K.; Donhauser, Z.J.; Hatzor, A.; Lewis, P.A.; Tan, L.P.; Tanaka, H.; Horn, M.W.; Weiss, P.S. Exploiting Intermolecular Interactions and Self-Assembly for Ultrahigh Resolution Nanolithography. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. -- Process., Meas., Phenom.2002,20, 2739-2744.
-
Farkas, E.; Anderson, M.E.; Chen, Z.; Rinzler, A.G. Length Sorting Cut Single Wall Carbon Nanotubes by High Performance Liquid Chromatography. Chem. Phys. Lett.2002,363, 111-116.
-
Tanaka, H.; Anderson, M.E.; Smith, R.K.; Donhauser, Z.J.; Hatzor, A.; Lewis, P.A.; Tan, L.P.; Horn, M.W.; Weiss, P.S. Nanofabrication Using Self-Assembled Monolayers - Precise Nanolithography Using Intermolecular Interactions and Self-Assembly. Jpn. Soc. Appl. Phys.; Thin Film and Surface Physics Division2003,118, 10.
-
Sanford, E.M.; Tori, M.G.; Smeltzer, T.M.; Beaudoin, C.K.; Anderson, M.E.; Brown, K.L. Cyclic Voltammetric, Chronocoulometric, and Spectroelectrochemical Studies of Electropolymerized Films Based on (3,4-Ethylenedioxythiophene)-Substituted 3,6-Dithiophen-2-yl-2,5-dihydropyrrole[3,4-c]pyrrole-1,4-dione. Electrochemistry.2015,83, 1061-1066.