George C. Shields

George Shields

Professor, Chemistry

swipe to see more

George Shields enjoys a national reputation in the field of undergraduate research, having collaborated with more than 135 undergraduate students in the fields of computational chemistry, structural biochemistry and science education. He received the 2015 American Chemical Society (ACS) Award for Research at an Undergraduate Institution and the 2018 Research Corporation for Science Advancement Transformational Research and Excellence in Education Award (TREE). He was elected as a Fellow of the American Association for the Advancement of Science (AAAS) in 2019, and as a Fellow of the American Chemical Society (ACS) in 2020. He received the Council of Undergraduate Research (CUR) Fellow Award in 2020 and the CUR-Goldwater Scholars Faculty Mentor Award in 2022. He is the founder and director of the Molecular Education and Research Consortium in Undergraduate Computational Chemistry (MERCURY), a collaboration of 43 undergraduate research teams at 40 different institutions. He serves on the advisory board of the Journal of Physical Chemistry.

George’s students have received 39 national awards, including four Fulbright, 13 Goldwater, and eight graduate fellowships, and 90% of his alumni have pursued advanced degrees in science, medicine, law, or business. Since 1993, he has published 100 scientific research papers, including 64 papers with 68 undergraduate co-authors. Sixteen of his papers have been cited more than a hundred times (Web of Science), including three papers in Science, four papers in the Journal of the American Chemical Society, and four papers in the Journal of Physical Chemistry. His undergraduates have presented at more than 180 national and international conferences. He has received over $6 million in funding to support undergraduate research.

George served as Furman's Vice President for Academic Affairs and Provost from 2016-2019. This was preceded by six years at Bucknell University as Dean of the College of Arts and Sciences and professor in the department of chemistry. He served as founding Dean of the College of Science and Technology at Armstrong Atlantic State University, and he also taught in and chaired the chemistry departments at Hamilton College and Lake Forest College.


  • Ph.D., Georgia Institute of Technology
  • M.S., Georgia Institute of Technology
  • B.S., Georgia Institute of Technology


My research efforts use computational methods to gain insights into biochemistry and atmospheric chemistry. My research group uses quantum chemistry, Monte Carlo, and molecular dynamics techniques to investigate the structure and function of molecules. The common theme throughout is the involvement of undergraduates in a productive and meaningful research experience.

Computational pKa Prediction

Using these methods requires a thorough understanding of solvation effects, and much of our basic work involves finding and learning how to use the best methods for incorporating solvation into traditional computational chemistry techniques. We have completed a systematic study of pKa calculations, funded by the American Chemistry Society (ACS), Petroleum Research Fund (PRF) and National Science Foundation (NSF), in order to learn how state-of-the-art methods can best be used to accurately predict deprotonation in aqueous solution.

Drug Design

We had drug design projects with funding from NIH, DOD, and Research Corporation, with an emphasis on breast cancer. Alpha-fetoprotein (AFP) is a protein produced by the fetal yolk sac and is presumed to act as a growth regulator during gestation. It is 591 amino acids long. It was discovered that high levels of circulating AFP in maternal serum decrease a woman’s risk of developing estrogen receptor positive (ER+) breast cancer later in life. It has recently been discovered that the peptide can be shortened to peptides as small as 4 amino acids long and still retain active breast cancer inhibition qualities. We have applied and demonstrated for the first time that replica exchange molecular dynamics (REMD) simulations can be used as a novel lead compound design tool. We have shown that a common conformation that is shared between the active linear 8-mer and cyclic 9-mer peptides of AFP is a conserved reverse beta-turn, and the smaller peptide analogs TOVNO, TPVNP, TOVN, and TPVN. These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, through interaction with a yet to be discovered key receptor, and inhibit human breast cancer in a mouse xenograft.


Structure and Properties of Water Clusters and Atmospheric Hydrates

We are also working on projects in atmospheric chemistry that focus on the role of water clusters. The aim is to locate the global and all relevant low lying local minima for each cluster.

Our sampling methods ensure that we have searched the large configurational space of hydrogen bonding networks available to these clusters and extracted the lowest energy configurations. Our quantum mechanical method of choice, MP2 is the most affordable yet very accurate method for studying non-covalently bonded systems like water clusters. The interplay between energy and entropy, the shapes and hydrogen bonding networks of the clusters are used to explain the growth patterns of the clusters. Ultimately, this information will be used to calculate cluster populations and nucleation rates that are compared with experiment rates of formation of aerosol particles.

Improved understanding of atmospheric aerosol formation would reduce the large uncertainty in the cooling effect of aerosols on the global radiation balance (see below) and refine global climate models.

IPCC WG1 4th Assessment Report, 2007