A. Briefly describe overall research program at your laboratory.

As a computational chemistry group, our research focuses on the application of efficient computational methods to understand the structure and dynamics of hydrogen-bonded systems ranging from water clusters, to sulfate aerosols in the atmosphere, to biological systems.

B. Briefly describe specific project(s) for your teacher

One of the following two project may be of interest:

Atmospheric Aerosols in Prebiotic Chemistry and the Origin of Life:

Recent works suggest that atmospheric aerosol particles may have played a catalytic role in the synthesis of biological molecules in the absence of enzymes. The Miller experiment of 1953 demonstrated the abiotic synthesis of amino acids from a gaseous mixture and electricity. Since then, many possible catalytic pathways have been shown to lead to the abiotic polymerization of such biological monomers, including mineral surfaces, deep sea thermal vents, etc. Our group is interested in exploring the catalytic role of atmospheric aerosols in the formation of polypeptides without the need for ribosomes. Our work is highly relevant to prebiotic chemistry and chemical evolution because current experimental techniques cannot access the relevant size regime for aerosols.

Development of a Pharmacophore Model and Identification of Neutral Antagonist Molecules to Inhibit the \(\mu \) Opioid Receptor Protein:

Approximately 50% of marketed drugs target G-Protein Coupled Receptors (GPCRs). Because the \(\mu \) opioid receptor (MOR) is a GPCR and is known to be involved in therapeutically relevant pathways that lead to pain and addiction, we are currently studying the specific structural characteristics that promote functional antagonism at the MOR. The goal of this project is to apply computational chemistry methods to predict molecules that will inhibit the \(\mu \) opioid receptor protein (MOR). The MOR is the molecular target of morphine, heroin, and other opioid drugs. A pharmacophore model illustrates the regions of space where specific steric and electronic feature must be present in order to bind to a target and block its biological response, in this case the MOR. Neutral antagonism means that a neutral antagonist molecule (NA) that fits the pharmacophore model will prevent opioid drugs from activating the MOR, thus inhibiting the action of opioids. A molecule that is a NA can thus be used to prevent or treat opioid addiction. The overall idea is to use computational tools to help find a non-opioid molecule that would be useful for the treatment of opioid addiction. The big picture is that opioid addiction is a compelling problem, and there are as yet no molecules that can be used to treat opioid addition that don’t have the chemical structure of opioids. Thus, the available treatments are themselves
addictive. We aim to invent molecules based on non-opioid chemical frameworks that can treat opioid addiction and are not addictive themselves.

C. Will any other people (post docs, grad students, undergraduate students, colleagues, etc.) be involved directly with your teacher?
 Yes – post doc as well as undergraduate students

D. Will you require any advanced reading/preparation for the teacher? If yes, please briefly describe.
 Will share out some journal articles and other readings.