A Contribution to Upper Domination, Irredundance and Distance-2 Domination in Graphs

Gerd H. Fricke
Chris Schroeder
Department of Mathematics, Computer Science, and Physics
Morehead State University
Morehead, KY 40351

and

Sandra M. Hedetniemi
Stephen T. Hedetniemi, Professor Emeritus
School of Computing
Renu C. Laskar, Professor Emerita
Department of Mathematical Sciences
Clemson University
Clemson, SC 29634

Abstract

Let \(G = (V, E) \) be a graph. The open neighborhood of a vertex \(v \in V \) is the set \(N(v) = \{u | uv \in E \} \) and the closed neighborhood of \(v \) is the set \(N[v] = N(v) \cup \{v\} \). The open neighborhood of set \(S \) of vertices is the set \(N(S) = \bigcup_{v \in S} N(v) \), while the closed neighborhood of a set \(S \) is the set \(N[S] = \bigcup_{v \in S} N[v] \). A set \(S \subseteq V \) dominates a set \(T \subseteq V \) if \(T \subseteq N[S] \), written \(S \rightarrow T \). A set \(S \subseteq V \) is a dominating set if \(N[S] = V \); and is a minimal dominating set if it is a dominating set, but no proper subset of \(S \) is also a dominating set; and is a \(\gamma \)-set if it is a dominating set of minimum cardinality. In this paper we consider the family \(\mathcal{D} \) of all dominating sets of a graph \(G \), the family \(\mathcal{MD} \) of all minimal dominating sets of a graph \(G \), and the family \(\gamma \) of all \(\gamma \)-sets of a graph \(G \). The study of these three families of sets provides new characterizations of the distance-2 domination number, the upper domination number and the upper irredundance number in graphs.